


2

$ whoami

Bojan Ždrnja (@bojanz on Twitter)
CTO and penetration testing team lead at INFIGO IS
• https://www.infigo.is
SANS Certified Instructor
• Co-author SEC542 – Web application

penetration testing and ethical hacking
Addicted to GIAC certificates
• GSE (GIAC Security Expert) #346
• GCIA, GCIH, GWAPT, GMOB, GXPN, GMON, GREM, GCFA,

GCFE, GCPN, GCTI, GCSA
SANS Internet Storm Center Senior handler - https://isc.sans.edu

https://www.infigo.hr/
https://isc.sans.edu/


3

Name 10 Vin Diesel movies
1) The Fast and the Furious (2001)

2) The Fast and the Furious: Tokyo Drift (2006)

3) Fast and Furious (2009)

4) Fast Five (2011)
5) Fast & Furious 6 (2013)

6) Furious 7 (2015)

7) The Fate of the Furious (2017)

8) F9 (2021)

9) Fast X (2023)

10) Pitch Black
… see the pattern?



4

Name 10 QUIC app protocols
1) HTTP/3

2) DNS over QUIC (DoQ)

3) ???

4) Your
5) Favorite

6) Protocol

7) Is

8) ???

9) Almost

10) Anything
… see the pattern?



A little bit of history



6

HTTP/1.1 vs HTTP/2

▪HTTP/2 specification was published in 2015
▪ Few years after, almost 50% of top 1000 web sites were running HTTP/2

▪HTTP/2 brought a lot of changes!
▪ It is a binary protocol, uses so–called binary framing

▪ Better compression abilities
▪ Parsing is handled in a more objective fashion

▪ Multiplexed, not pipelined
▪ With HTTP/1.1 each request requires its own TCP connection, or uses pipelining

▪ Susceptible to Head-of-line blocking (HOL)
▪ Streams are bi-directional sequences of frames exchanged in a single TCP 

connection
▪ HTTP responses are split into frames, which can be simultaneously sent and prioritized

01



7

HTTP/2
Connection

HTTP/1.1 vs HTTP/2

Http1/1 Http1/1 Http1/1 Http1/1

TLS 
Session

TLS 
Session

TLS 
Session

TLS 
Session

TCP 
Connectio

n

TCP 
Connectio

n

TCP 
Connectio

n

TCP 
Connectio

n

Browser

Wire

TCP Connection

TLS Session

RequestRequestRequestRequest

HTTP/2
Stream

HTTP/2
Stream

HTTP/2
Stream

HTTP/2
Stream

Browser

Wire

Classic 
HTTP

H2



8

HTTP/1.1 vs HTTP/2 vs HTTP/3

▪With HTTP/1.1 browsers usually open 6 connections, with HTTP/2 
one!
▪One TCP connection is great for servers

▪ … but not so great for users, if there is a lost packet
▪ We solved HTTP head of line block, but now we got TCP head of line block

▪QUIC introduced UDP as transport protocol
▪ No more TCP head of line blocking
▪ QUIC is secure – always encrypted
▪ Published in 2021 as RFC 9000
▪ HTTP-over-QUIC (HTTP/3) builds upon HTTP/2

▪ Moves some of the specifics from the HTTP layer as they are covered by QUIC

03



9

HTTP/2 vs HTTP/3

CLIENT SERVER

SYN

SYN/AC
K

Hello

Hello, Cert, 

Fin

Fin, GET /

200 OK

Initial, Hello

Initial, Hello, Cert, 

Fin

Fin, GET /

200 OK

CLIENT SERVER

TCP + 
TLS/1.3

QUIC

ha
nd

sh
ak

e

ha
nd

sh
ak

e

da
ta

da
ta



10

QUIC and HTTP/3 are everywhere

▪Google services
▪ Search, Youtube

▪ Facebook
▪ Instagram
▪Uber
▪Browsers

▪ Chrome, from 2012!
▪ Firefox, 2021
▪ Safari

05



11

Protocol advertising

▪ Today browsers will still try HTTP/1.1 or HTTP/2 as default 
protocols
▪A server will advertise its support for QUIC with a new response 
HTTP header:
▪ Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000

▪ Google supports h3 and h3 draft 29 on port 443
▪ Can be cached for 2592000 seconds (30 days)

▪ If we do not want QUIC to be used, we can delete the response 
header
▪ This way the client will think the server does not support QUIC
▪ The server will think the client does not support QUC

06



A QUIC deep dive

Parental Advisory: Rated X: Some CRYPTO is about to be shown



13

How QUIC actually works?

▪QUIC is specified in RFC 9000: “QUIC: A UDP-Based Multiplexed 
and Secure Transport”
▪ It is not an easy read, or a simple protocol
▪On the contrary – while reading all this several
times I thought certain things are insane
▪ Let’s see why

01



14

Initialization

▪QUIC makes security and privacy a first-class citizen
▪ This means that authors try to encrypt as much as possible
▪ While certain things can be decrypted, as we will show in a minute, this 

will inevitably cause problems for various IDS/IPS devices
▪ Attackers wave to Darktrace, Vectra and ExtraHop

▪QUIC relies on TLSv1.3
▪ This helps with a shorter handshake (one of QUIC goals)
▪ However certain metadata is still visible

▪ QUIC tries (not successfully though!) to hide that

02



15

Initialization

▪ In TLSv1.3 we almost exclusively use elliptic curve (EC) 
cryptography for key exchange
▪ Means – forget about passive analysis (another wave to previous slide 

devices)
▪ These are sent in TLS extension supported groups

▪ x25519, secp256r1, secp384r1
▪ The first step for a client is to create a private/public keypair, 
usually with X25519, which does point operations on the 
Curve25519 elliptic curve

03



16

Initial keys calculation (QUIC v1)04
▪Now comes the fun, the client generates certain random data
▪ This will be used for various initial keys generation
▪ Initial salt is ALWAYS: 
38762cf7f55934b34d179ae6a4c80cadccbb7f0a
▪ First SHA-1 collision found by Google researchers

▪QUIC uses HKDF – HMAC Key Derivation Function
▪HKDF consists of two important functions:

▪ HKDF-Extract
▪ Takes random data and salt, and generates a key used by HKDF-Expand

▪ HKDF-Expand
▪ Takes the key, some “info” and length, and produces out of desired length



17

Initial keys calculation

▪So, a QUIC client basically calculates the following:
▪ initial_salt = 38762cf7f55934b34d179ae6a4c80cadccbb7f0a
▪ initial_random = (random bytes)
▪ initial_secret = HKDF-Extract(salt: initial_salt, key: initial_random)
▪ client_secret = HKDF-Expand-Label(key: initial_secret, label: "client in", ctx: "", len: 32)
▪ server_secret = HKDF-Expand-Label(key: initial_secret, label: "server in", ctx: "", len: 32)
▪ client_key = HKDF-Expand-Label(key: client_secret, label: "quic key", ctx: "", len: 16)
▪ server_key = HKDF-Expand-Label(key: server_secret, label: "quic key", ctx: "", len: 16)
▪ client_iv = HKDF-Expand-Label(key: client_secret, label: "quic iv", ctx: "", len: 12)
▪ server_iv = HKDF-Expand-Label(key: server_secret, label: "quic iv", ctx: "", len: 12)
▪ client_hp_key = HKDF-Expand-Label(key: client_secret, label: "quic hp", ctx: "", len: 16)
▪ server_hp_key = HKDF-Expand-Label(key: server_secret, label: "quic hp", ctx: "", len: 16)

05



18

First packet

▪ These initial
keys are used
to encrypt the
first packet!

06



19

Header protection

▪ This gets even more insane
▪ The first byte’s nibble and the Packet Number get “encrypted” by 
XOR-ing them with product of the following:
▪ Take 16 bytes of the payload, but 4 bytes past the first byte of the packet 

number

▪ Now encrypt those 16 bytes with client_hp_key by using AES-128-ECB and 
use first 5 bytes of result for XOR-ing the first byte’s nibble and the Packet 
Number

▪We can calculate this, of course, and restore proper first byte and 
Packet Number values

07



20

Decrypting the QUIC header

▪Now we can decrypt the QUIC protected header, as we have all 
ingredients:
▪ client_key
▪ client_iv
▪ Record number (0 in this case)
▪ GCM authentication tag

▪ Last 16 bytes in the packet
▪ Additional authenticated data

▪ This is the whole QUIC unprotected header, but with decrypted (XOR-ed) first nibble 
and packet number bytes
▪ In other words, we need the original values

08



21

Decrypted QUIC header

▪Here’s the CyberChef recipe

09



22

QUIC CRYPTO frame10



23

Important parameters11



24

QUIC connections

▪QUIC connection is a single conversation between two endpoints
▪ Once a connection has been created, streams are used to send/receive 

data
▪Each connection has its unique Connection ID

▪ Ensures that packets are delivered to the correct endpoint
▪ Allows us to migrate connections over IP addresses!

▪Streams provide ordered byte-stream abstraction
▪ Can be unidirectional and bidirectional
▪ Can be interleaved with other streams

▪ 0-RTT can be achieved by a client that connected previously
▪ They can cache certain data to achieve 0-RTT

12



25

And to spice things up

▪Anyone can change/introduce new QUIC protocols
▪ Change congestion, flow control, streams, 0-RTT, packet size

▪Google has their own (3 are IANA registered)
▪ 0x5130303[1-9] (Q001 – Q009) … Q059

▪ Facebook decided to have their own
▪ Called MVFST (https://github.com/facebook/mvfst) - 0xfaceb00[0-f]

▪Mozilla too: 0xf123f0c[0-f] (MozQuic)
▪Microsoft said – hey us too: 0xabcd000[0-f] (MsQuic)
▪ Tencent too ☺: 0x0700700[0-f] (TencentQuic)

13

https://github.com/facebook/mvfst


Applications that live on top of QUIC



27

HTTP/3

▪ The obvious candidate is HTTP/3
▪Streams are provided by QUIC (compared to HTTP/2 which 
provides streams itself)
▪Bootstrap is with Alt-Svc as already mentioned
▪As with HTTP/2 we have server push

▪ Mechanism that allows a server to send data that the client never asked 
for!
▪ PUSH_PROMISE frame

▪ Is always encrypted
▪ HTTP/2 can be in “plain text”, although not common

01



28

DNS over QUIC (DoQ)

▪Became a standard in 2022
▪Encrypts everything, again, so your ISP cannot see what you 
resolve
▪As before solves the head of line blocking issue

▪ Usually visible for those using DNS-over-TLS
▪ Fast so we get to resolve hostnames even faster
▪Uses UDP port 853

▪ Same port as DNS-over-TLS
▪Do not mix it with DNS over HTTP/3
▪Still not widely supported

02



29

Samba over QUIC

▪Simon Microsoft says: we’ll push everything over QUIC and we’ll 
start with Samba
▪ Initially available only Windows Server 2022 Datacenter Azure 
Edition
▪ Now in Windows Server 2025 on premise, client in Windows 11

▪Samba over QUIC – UDP port 443
▪Requires properly setup certificates
▪Still uses TCP by default

▪ QUIC tried if TCP fails, or if manually set
▪Microsoft calls this “SMB VPN”. Any issues here?

03



30

SSH over QUIC (SSH3)

▪And for the final abomination: SSH3
▪ Well, it’s perhaps not that bad

▪Released at https://github.com/francoismichel/ssh3
▪ While not production ready, works surprisingly well

▪Complete revisit of the SSH protocol
▪ Semantics of the protocol are mapped on top of HTTP3
▪ QUIC+TLSv1.3 used for server authentication
▪ HTTP Authorization used for user authentication

▪Cool feature: it can be made (almost) invisible

04

https://github.com/francoismichel/ssh3


Anyone using QUIC?



32

Scanning for QUIC services

▪Since QUIC uses UDP
it is not trivial to scan
for QUIC services
▪ nmap, my favorite tool
actually fails
▪ It’s quite bad in fingerprinting

UDP services

01



33

zmap to rescue

▪Several researchers, with Johannes Zirngibl extended the ZMap 
fork with a QUIC module
▪ This module sends QUIC initial packets with version 0x1a1a1a1a to force 

a Version Negotiation
▪ Modules also pad packets to 1200 bytes as required by RFC9000

▪ This means that an order of magnitude more traffic is produced than while 
performing a simple TCP SYN scan
▪ But it works!

▪ The fork is available at https://github.com/tumi8/qscanner 

02

https://github.com/tumi8/qscanner


34

QUIC-ing Croatia

▪ I used this modified version of zmap to scan all Croatian IP space
▪ Contains ~2 million IP addresses

▪Here’s what QUIC looks like in Croatia
▪ 230 IP addresses identified with QUIC services

▪ 59 used by Google
▪ 38 used by Facebook
▪ 4 used by WhatsApp
▪ 121 used by Akamai
▪ 2 weird TRAEFIK devices
▪ 5 used by Plus hosting / mojsite.com
▪ rudar.rgn.hr – I was surprised but it just points to Plus hosting

03



35

QUIC-ing Croatia

▪We can now scan identified sites to grab their HTTP/3 certificates 
etc
▪Another tool was produced by same authors – Qscanner

▪ Available at https://github.com/tumi8/qscanner
▪ It is written in Go, and thus quite fast
▪Uses zmap’s CSV output as an input file
▪Supports logging of keys, QUIC transport parameters, TLS 
handshake information and X.509 certificates
▪ A bit clumsy output in JSON

▪Supports only HTTP/3 though

04

https://github.com/tumi8/qscanner


36

Release: quicmap

▪Decided to make a new QUIC scanner that supports any/all 
ALPN’s
▪No need to use zmap/Qscanner anymore

▪ Although this is in Python, but still relatively fast
▪ Thanks to my colleague Fran Čutura
▪ We will be adding new features in upcoming days/weeks

▪Get it while it’s hot!

▪ https://github.com/bojanisc/quicmap

05



37

Scanning ‘round the Internetz06



38

Port knocking

▪QUIC allows for almost ideal implementation of port knocking
▪ Technique that allows us to start a backdoor service by sending a specific 

fingerprint/packet to the target server
▪Or, we can invent our own protocol

▪ Respond only if the proper ALPN string was supplied
▪ We can use an existing, but not used protocol (i.e. irc)
▪ Or use our own
▪ How about using this for C&C?

07



39

Time for questions?




